MATHS READING - RELATIVITY VERSUS QUANTUM MECHANICS (I ACTUALLY UNDERSTOOD SOME OF THIS) - this reading is an extract from the article ...
The conflict between the two halves of physics has been brewing for more than a century – sparked by a pair of 1905 papers by Einstein, one outlining relativity and the other introducing the quantum – but recently it has entered an intriguing, unpredictable new phase. Two notable physicists have staked out extreme positions in their camps, conducting experiments that could finally settle which approach is paramount.
Basically you can think of the division between the relativity and quantum systems as 'smooth' versus 'chunky'. In general relativity, events are continuous and deterministic, meaning that every cause matches up to a specific, local effect. In quantum mechanics, events produced by the interaction of subatomic particles happen in jumps (yes, quantum leaps), with probabilistic rather than definite outcomes. Quantum rules allow connections forbidden by classical physics. This was demonstrated in a much-discussed recent experiment in which Dutch researchers defied the local effect. They showed that two particles – in this case, electrons – could influence each other instantly, even though they were a mile apart. When you try to interpret smooth relativistic laws in a chunky quantum style, or vice versa, things go dreadfully wrong.
Relativity gives nonsensical answers when you try to scale it down to quantum size, eventually descending to infinite values in its description of gravity. Likewise, quantum mechanics runs into serious trouble when you blow it up to cosmic dimensions. Quantum fields carry a certain amount of energy, even in seemingly empty space, and the amount of energy gets bigger as the fields get bigger. According to Einstein, energy and mass are equivalent (that’s the message of E=mc2), so piling up energy is exactly like piling up mass. Go big enough, and the amount of energy in the quantum fields becomes so great that it creates a black hole that causes the universe to fold in on itself. Oops.
Craig Hogan, a theoretical astrophysicist at the University of Chicago and the director of the Center for Particle Astrophysics at Fermilab, is reinterpreting the quantum side with a novel theory in which the quantum units of space itself might be large enough to be studied directly. Meanwhile, Lee Smolin, a founding member of the Perimeter Institute for Theoretical Physics in Waterloo, Canada, is seeking to push physics forward by returning to Einstein’s philosophical roots and extending them in an exciting direction.
To understand what is at stake, look back at the precedents. When Einstein unveiled general relativity, he not only superseded Isaac Newton’s theory of gravity; he also unleashed a new way of looking at physics that led to the modern conception of the Big Bang and black holes, not to mention atomic bombs and the time adjustments essential to your phone’s GPS. Likewise, quantum mechanics did much more than reformulate James Clerk Maxwell’s textbook equations of electricity, magnetism and light. It provided the conceptual tools for the Large Hadron Collider, solar cells, all of modern microelectronics.
What emerges from the dust-up could be nothing less than a third revolution in modern physics, with staggering implications. It could tell us where the laws of nature came from, and whether the cosmos is built on uncertainty or whether it is fundamentally deterministic, with every event linked definitively to a cause...
By pushing at the bounds of understanding, Hogan and Smolin are helping the field of physics make that connection. They are nudging it toward reconciliation not just between quantum mechanics and general relativity, but between idea and perception. The next great theory of physics will undoubtedly lead to beautiful new mathematics and unimaginable new technologies. But the best thing it can do is create deeper meaning that connects back to us, the observers, who get to define ourselves as the fundamental scale of the universe. (Powell, 2015).
REFERENCE
Powell, C. S. (2015) 'Relativity vesus quantum mechanics: the battle for the universe', The Guardian 4 November [Online]. Available at: http://www.theguardian.com/news/2015/nov/04/relativity-quantum-mechanics-universe-physicists (Accessed 4 November 2015).
Powell, C. S. (2015) 'Relativity vesus quantum mechanics: the battle for the universe', The Guardian 4 November [Online]. Available at: http://www.theguardian.com/news/2015/nov/04/relativity-quantum-mechanics-universe-physicists (Accessed 4 November 2015).